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The asymptotic frequency, oJ, dependence of the dynamic viscosity of neutral 
hard-sphere colloidal suspensions is shown to be of the form JloA(~b)(tore)-i/,., 
where A(~b) has been determined as a function of the volume fraction ~b, for all 
concentrations in the fluid range, qn is the solvent viscosity, and r I, is the P6clet 
time. For a soft potential it is shown that, to leading order in the steepness, the 
asymptotic behavior is the same as that for the hard-sphere potential and a 
condition for the crossover behavior to I/torp is given. Our result for the hard- 
sphere potential generalizes a result of Cichocki and Felderhof obtained at low 
concentrations and agrees well with the experiments of van der Werff et al. if the 
usual Stokes-Einstein diffusion coefficient Do in the Smoluchowski operator is 
consistently replaced by the short-time self-diffusion coefficient Ds(~) for 
nondilute colloidal suspensions. 

KEY WORDS: Viscosity; viscoelasticity; rheology; colloidal suspensions; 
hardspheres; softspheres. 

1. I N T R O D U C T I O N  

The viscoelastic behavior, i.e., the frequency-dependent viscosity r/(~b, o9), of 
concentrated neutral hard-sphere colloidal suspensions has been obtained 
in the benchmark experiments of Van der Werff et aU ~-~ for volume 
fractions 0.44 < ~b < 0.58, where ~b = nna3/6, with n the number density of 
the colloidal particles of diameter tr. The frequency dependence was found 
to be qualitatively similar to that obtained theoretically by Cichocki and 
Felderhofl 1 ~ for dilute suspensions from an exact solution of the two-particle 
Smoluchowski equation for two Brownian particles without hydrodynamic 
interactions. 
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An approximate theory for concentrated colloidal suspensions was 
developed by Verberg et al. ~3~ which agreed well with the experimental 
results of Van der Werff et al. for such suspensions. In particular, the 
asymptotic behavior of the (complex) viscosity for large frequencies co was 
given correctly as ~r/oA(r + i)/~/core, where r/0 is the viscosity of the 
solvent, A(~b) an amplitude, and rr, a characteristic Brownian particle inter- 
action time, the P6clet time, defined below. However, the amplitude A(r 
was at small r a factor two smaller than the exact value obtained by 
Cichocki and Felderhof at low densities and it was too high when compared 
with the experiments of Van der Werff et al. at high densities. This difference 
in asymptotic behavior did not affect the good agreement with experiments 
carried out in the reduced form used by Van der Werff et al/3-5~ 

In the theory of Verberg et al. q(r co) was obtained as a sum of two 
terms: a short-time (infinite-frequency) contribution r/o:(r on the very 
short Brownian time scale ZB(,~10 -9 sec) where the Brownian particle 
forgets its initial velocity, and a long-time contribution, on the very much 
longer P6clet time scale r p ( ~ 1 0  -4sec),  involving mode-mode coupling 
contributions associated with two cage-diffusion modes that describe the 
diffusion of each colloidal particle out of the cage in which it finds itself in 
a concentrated colloidal suspension~3~: 

,7(r co) = ~ ( r  + qmo(r co) (1.1) 

For large co, the mode-mode coupling contributions/~mc(tb, co) reduces to 

r/m~(r co)=~ CZx(r x/coZP (I + i) qo + 0 (1.2) 

where X(r is the equilibrium radial distribution function geq(r; r at contact, 
i.e., X(r  g~q(r=a;  r where r is the distance between two hard spheres 
of diameter a and rp = aa/4Do . Here Do is the Stokes-Einstein diffusion 
coefficient 

k B T  
Do - 3nr/0 a ( 1.3 ) 

where k a is Boltzmann's constant and T the temperature of the colloidal 
suspension. 

For low concentrations r -~ O, Y(r ~ 1 and q,,c(r co) reduces to 

q. ,c(r  co) = rM,, co) - rt ~ (4 , )  
~ o  9 r 

, -  (1 + i )  r/o (1.4) 
5 ~/co~p 
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while Cichocki and Felderhof obtain (t) 

r/cw(q~,og)--~/~o(~b) +~0 18 ~2 ' Tv/- (1 +i)Vo (1.5) 

The different coefficient in Eq. (1.4) for the approach to qo~(~b) is due to the 
approximate nature of r/mc(~b, co). (3) 

The purpose of this paper is to obtain the exact asymptotic behavior 
of r/(~b, co) for large co for all ~ studied by van der Werff et al., (2) i.e., an 
extension of Cichocki and Felderhofs result to high concentrations, as well 
as its behavior for a soft potential. 

In the next section we will give the basic equations. In Section 3 we 
will calculate the asymptotic frequency-dependent viscosity for a soft, but 
very steep potential, starting from the Green-Kubo expression. In Sec- 
tion 4 we will give the result for a hard-sphere potential, as the limit of a 
soft potential. We will end with a short discussion on the soft-potential 
result. 

2. BASIC EQUATIONS 

In order to obtain the asymptotic behavior of q(~b, co) for large o9 for 
concentrated suspensions we start from a general Green-Kubo expression 
for the frequency-dependent viscosity of a colloidal suspensionl6): 

q(~b, o9) = qo~(~b) + ~  I : '  dtp'~(t;~)ei"' (2.1) 

Equation (2.1) gives the linear response of the suspension to an applied 
shear rate 7 ( t )=  7o e-i' ' '  with finite frequency co and vanishing shear rate 
amplitude Y0 ~ 0. In Eq. (2.1), f l=  1/ksT, V is the volume of the colloidal 
suspension, while p,~(t;~b) is the stress-stress autocorrelation function 
defined by 

= (X.,., ,(r) r162 p,,(t; r ,i N e,a(,-u: (2.2) 

where the brackets denote a canonical equilibrium ensemble average. The 
microscopic stress tensor s N) is given by 

N 

X[,l:,,(r N) = ~ r,..,.F;, y(r N) (2.3) 
i = 1  
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with ri the position of particles i( i = 1 ..... N), r N =  r ~ ..... r N , F i = - V i q~( r N) 

the total force on particle i(V; = 0/0r3, r  N) the total potential energy of 
the colloidal particles, and 

N 
~(FN'~ r = E (Vi+flFg(rN))" DO (rN)'vi (2.4)  

i,j=l 

the N-particle Smoluchowski operator/7-9~ the colloidal analogue of the 
Liouville operator for atomic liquids, c ~0~ with Do. ( r  N) the diffusion tensor, 
incorporating hydrodynamic interactions. This diffusion tensor determines 
the velocity imparted to particle i by a force acting on particle j. In the 
absence of hydrodynamic interactions, i.e., for r ~ 0, the diffusion tensor 
becomes diagonal and independent of r N, 

D~i(rN)  = Dol figi (2.5) 

with 1 the unit tensor and 0~i the Kronecker symbol. However, in concen- 
trated suspensions, where hydrodynamic interactions no longer can be 
neglected, D~i(r  N) becomes a function of the positions of all particles, 
involving therefore many-particle interactions. 

The diffusion tensor Dii(r 'v) is directly related to the experimental 
sho rt-time self-diffusion coefficient D.,.(r ) by ~ 7.8 

D,(r < O. �9 0> . ,  (2.6) 

for any particle i. Here 0 is a 3-dimensional unit vector. D,.(r reduces in 
the dilute limit to the Stokes-Einstein diffusion coefficient Do [ cf. Eq. (2.5)]. 
D,~(r is a purely hydrodynamic quantity, which involves the calculation of 
the very complicated many-particle interactions, and has been the subject of 
research for many years, both theoretically ~HS~ and experimentally/~9 24~ 

By now the behavior of Dr and D.,.(r for intermediate volume fractions 
up to r ~ 0.45 is fairly well understood theoretically. For higher concentra- 
tions to the best of our knowledge only semiempirical results exist. 

However, in this paper we are particularly interested in the high volume 
fractions r > 0.40. Therefore we were forced to incorporate hydrodynamic 
interactions in an approximate (mean-field-like) fashion, using Eq. (2.6). 
This approximation seems justified for high frequencies, where the particle 
distribution in the suspension is very close to the equilibrium particle 
distribution, so that the hydrodynamic interactions are described in first 
order by the hydrodynamic interactions of the suspension at infinite 
frequency. The mean-field approximation will be done explicitly in the next 
section. For D,(r we use at the end a semiempirical relation which is 
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consistent with experiments and hard-sphere computer simulations for all 
4 up to 4 ~0.60. (25) 

3. L A R G E - F R E Q U E N C Y  V I S C O S I T Y  FOR S O F T  P O T E N T I A L S  

We will proceed with the calculation of the asymptotic behavior of 
v/(4, co) for large co by calculating the stress-stress autocorrelation function 
p,~(t; 4) of Eq. (2.2) with the microscopic stress tensor of Eq. (2.3) and the 
N-particle Smoluchowski operator of Eq. (2.4) for a soft, but very steep 
potential. 

We restrict ourselves to pairwise additive potentials, i.e., q~(rU)= 
~-'~f<j=l V(F(j), with V(r~) the two-particle potential and r~/=r~-r j ,  rii= 
Ir~/I. We can then write Eqs. (2.3) and (2.4), respectively, as 

and 

,I ,v 1 ~ OV(ru) 
Z,.,,(r ) = - - ~  rii.. ,. ~ri-. 

i ~ j  . .  
(3.1) 

N ( OV(rik)~ �9 Du(rN) �9 Vj (3.2) 
~ff~(FU; 4 )  = Z 0ik V,--fl(1--0,k) Ori / 

i.j.k=l 

We determine the asymptotic behavior of v/( 4, a~) from Eq. (2.1) for a 
soft, but steep pair potential Vl(r)=e(a/r) I, with e the pair interaction 
energy at r = a and l = Ir(O/Or)In Vz(r)[ the steepness of the potential. Since 
the hard-sphere potential is the limit for l ~ oo of V/(r), one can obtain the 
hard-sphere result by letting l--* oo at the end of the calculation. This is 
discussed in the next section. 

In order to compute p,1(t; 4) for short time, we first expand p,l(t; 4) 
for V/(r) in powers of t. Thus, we first write Eq. (2.2) for p,~(t; 4) as 

(3.3) 
n~O " 

and then calculate 

Pt t i ( 4 )  = <'~V'I~-I,(I"N) ~r-~n(FN; 4 )  ,V'q (leN]x~ 
. . .xT'~- / z r 

using Eq. (3.1) for the second ZI,~.,D "u) within the brackets, i.e., 

1 ( OV,(F,2)~ 
P"I(4)=---2 N ( N - 1 )  Z'i~"'(r~V) f2"(rY;4)r '2"" Ort.y /~q (3.4) 

for the soft potential V~(r). 
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In this paper we will restrict ourselves to only the leading order in the 
steepness. Thus, we take into account, for each n, only the most divergent 
terms in /. This implies that, for short times, we can neglect all the 
contributions of more than two particles to the equilibrium ensemble 
average ( . ) eq ,  i.e., we only have to calculate the two-particle contribu- 
tions, involving the equilibrium radial distribution function g~q(r; ~). This 
is because, relative to the two-particle contributions, the n-particle 
contributions are of the order l -~''-21, so that they can be neglected in the 
limit l ~  ~.(261 

Thus, for 12(rN;~b) in Eq. (3.4) we can use Eq. (3.2) with only 
i, j ~  { 1, 2}, giving 

OVt(r'2)~ �9 Vii" p~(~b)= - ~ N ( N - 1 ) ( X ~ . y ( r  N) [ (V, -fl ~ j D,.(rN, �9 

oml(r,2)~ 
xr,~ (3.5) 

-, .x 0FI ,  y / e q  

Here we used the symmetry of O(rN; ~) in the particles 1 and 2 when 
applied to functions of r t,_. We have introduced the relative diffusion coef- 
ficient of two interacting spheres D~(r N) = 2(D,,(r  N) - D ,2(rN)). (25" 9~ In the 
dilute limit for just two particles, distant from all others, the diffusion 
tensors Dll(r l ,  r2) and Dt2(rl, r2) are known.  (1.'27'28) 

For concentrated suspensions we make a mean-field approximation. 
We replace D,.(r W) in Eq. (3.5) by its mean value (D,.(rN))~q, which 
reduces for high frequencies, i.e., for short times, to twice the single-particle 
short-time self-diffusion coefficient D.,.(~b) as given in Eq. (2.6). .25, 29. 30~ Thus 
we write in Eq. (3.5) 

D,.(rN) = ( D ~ ( r N )  ) eq = 2D.,.(~b) 1 (3.6) 

consistently with Eq. (2.6). 
Using this approximation and Eq. (3.1) for i, j ~  { 1, 2}, i.e., neglecting 

again all but two-particle contributions, we find straightforwardly 

p'~(~) =~ N(N-  1)(2D~.(Cb))" 

( a V t ( r , 2 ' I (  aVt(r,2'.~ ]" OVt(r,2') 
x ",2..,- ~ V , - f l  Or, j . V ,  r'2"x art ,--------~ eq (3.7) 

Since Vlrl2Vl(rt2)=rl,_ViVt(rl2)(l+O(l-I)), we can shift, to leading 
order in the steepness, the differential operator Vt through r,2 in any 
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product of rl2 and Vl(rt2 ) or its derivatives. Thus, from Eq. (3.7) we obtain 

p'~(g~) = ~ N ( N -  1)(2D.,(~))" 

/r~.ry 
x \ r2 V't(r)[(V I --fiVe(r) ~ ) .V , ] "  V~(r) (3.8) 

t e q  

with r = rt2, r = [rl21, f = r/r, OVl(rl2)/Ort2 = V'l(r). 
Changing to spherical coordinates, using the definition of the equi- 

librium radial distribution function geq(r; ~b) for the soft potential V~(r), 
and performing the angular integration, we find from Eqs. (3.3) and (3.7) 

2 f] 
p,(t;  ~b) =--(-~ nnZg drgeq(r; ~) I "4 

X V~(r){exp[ZtD,.(cb)(V~-flV'~(r) Vr)]} V)(r) (3.9) 

where V,. = O/Or. 
Thus we have expressed p,(t;  ek) at large volume fractions ~b and to 

leading order in the steepness l in terms of a one-dimensional integral 
over r involving the high-density equilibrium radial distribution function 
geq(r; ~b) for a potential Vl(r) of finite but large l and the effective short- 
time self-diffusion coefficient D,.(ck). In the next section we consider the 
hard-sphere limit ( l ~  oo) of Eq. (3.9). 

4. H A R D - S P H E R E  L I M I T  

To evaluate Eq. (3.9) for hard spheres, we introduce the function 

yeq(r; ~b)= g~q(r; ~b) e/~vt~rl (4.1) 

As discussed in Ref. I0, y~q(r; ~b) is, unlike g~q(r; ~), a smooth continuous 
hs F"  hs . function of r for all r and L For hard spheres g~q( , ~b) = y~q(r, ~) for r >/a 

h s (  hs y~q(r= ~) is the pair correlation function at and z(~b) - geq,r = a;  ~b) = a; 
contact. Writing Vhs(r)= VI_ ~,~(r), using that 

e-/'%l"lV'hs(r ) = --~ fi(r - a) (4.2) 

and using Eq. (4.1), we can write for the stress-stress autocorrelation 
p~(t; q~) of Eq. (3.9) in the hard-sphere limit l ~  

p,,(t; ok) = nnZVz(c~) dr r4e-I;Vh~(")Vhs(r) e --hstr) (4.3) 
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") ! 

Here we have defined/217= 2D.,.(~b)(V;--flVh~(r) V,.), the radial part of the 
two-particle Smolochowski operator for a hard-sphere potential in relative 
coordinates. 

This expression can be calculated by a method similar to that of 
Cichocki and FelderhofJ t~ The actual calculation is given in more detail in 
the Appendix, giving 

( 2Do "~'/2V 1 
pq(t; ~b) = ek2Z(Ck)krcD,.(~) j --fix/~rlo (4.4) 

Equation (4.4) leads, with Eq. (2.1), to our final result for hard spheres: 

r/(~b, co) . . . . . .  , q_~_(~)+ A ( ~ b ) ~ q o  (4.5) 

with the coefficient of the square root singularity A(~) given by 

Do ,~/2 
(4.6) 

This result, based on the Green-Kubo formula t6~ for the frequency-dependent 
viscosity q(~b, 09) of a colloidal suspension consisting of hard spheres with 
hydrodynamic interactions included, is compared with experiments of van 
der Werffet alJ 2~ in Fig. 1. Here we have used for X(~b) the Carnahan-Starling 
approximation (Ref. 25; Ref. 10, pp. 36, 95) z(~b) = (1 - 0.5~b)/(l - ~b) 3 for 
r ~< 0.5 and a one-pole approximation ~-'5~ X(r = 1.2/( 1 - r162 for r > 0.5, 
with ~b,,, = 0.63 the volume fraction at random close packing. For D,.(q~)/D o 
we have used Beenakker and Mazur's expression ~7~ for ~b~<0.45 and 
D,.(ek)/Oo = 0.85(1 - ~bAb,,,) for ~b > 0.45. '25' 

Figure 1 clearly shows that in order to obtain agreement with experi- 
ment it is neccesary to include hydrodynamic interactions, i.e., to take into 
account the diffusion tensor D0.(r N) in the basic N-particle Smoluchowski 
equation. In a mean-field approximation this leads to the replacement of 
the Stokes-Einstein diffusion coefficient Do by the short-time self-diffusion 
coefficient D,.(~b), a replacement also made by Brady) 25~ Equations (4.5) 
and (4.6) reduce to the exact expression [Eq. (1.5)] obtained before by 
Cichocki and Felderhof for low densities ~) to O(~b 2) (see Appendix). 

We will show in the next section [Eqs. (5.1) and (5.3)] that the right- 
hand side of Eq. (4.4) is the leading term of the expansion in powers of l 
of p(t; d?) for a soft potential, i.e., for finite 1 and for frequencies co up to 

(12/r i,) D.,(~b)/Do. 
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Fig. I. Coefficient A(~) of the square root singularity in t~, i.e.. ~ A(~b){l + i ) q , , / t , / ~ , ,  of 
q(r co) as a function of the volume fraction r Experimental points (.) of van der Werff et 
a/.: c2~ the vertical lines indicate the estimated errors in the experimental values of A(~bl. while 
the horizontal lines indicate the effect of the 4% uncertainty in ~ (C, B. de Kruif. private 
communication). The long-dashed line represents the mode-coupling result, Eq. (I.2), and the 
solid line our result given in Eq. (4.6). Here we have used for x(~b) the Carnahan-Starling 
approximation (Ref. I0, pp. 36, 95) Z(~b)=( l -0 .5r  _q~)3 for r and a one-pole 
approximation ~-''~) Z(q~)= 1.2/(1-r162 for ~b>0.5, with (,b,,, = 0.63 the volume fraction at 
random close packing. For D,(~)/Do we have used Beenakker and Mazur's expression qm for 

~< 0.45 and D,i~b)/D, = 0.85( I - 4)/~,,,) Ior 4> > 0. 45)'-s' The short-dashed line represents 
Eq. (4.6) with D~(q~)= D(). i.e., when hydrodynamic interactions are neglected. 

5. SOFT POTENTIAL 

We note that the large-co behavior of r/(~, co)~ 1/x/~ is typical for 
hard spheres. For any soft, but steep potential, r/( ~, co) ~ 1/co for co ~ oo. 
For example, the presence of a lubrication layer causes a change in the 
relative diffusion of two spheres at very short times, which leads to 1/co 
behavior at very high frequencies, as discussed by Cichocki and Felderhof (3~1 
and Rallison and HinchJ 32) To study the transition from the 1/co behavior 
(for any finite l) to the 1/x/~ behavior ( l=  oo) we have calculated p,l(t; cb) 
of Eq. (3.9) for finite L For finite l Eq. (3.9) can no longer be calculated by 
a method'similar to that of Cichocki and Felderhof, (1) described in the 
Appendix, but involves the calculation of the complete eigenvalue problem 
of the radial part of gt,=2D,.(c~)(V~.-flV'l(r)V,.), the two-particle 
Smoluchowski operator in relative coordinates, for finite I. (33) The result for 
p,j(t; ~b) in Eq. (3.9) can be written as 133) 

2tO? 2 Vhy3z( qb ) 
p,(t; if) = 15fl2 r(r(~)) (5.1) 
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with r(~b) = 2D.,.(~b) tl2/a '. The function r(x) can be expanded for x ,~ 1 as 

r(x) = 1 - x  + 3x2 + O(x 3) (5.2) 

and for x > 1 as 133) 

l(  (1)) 
r ( x ) = - ~ n x  1 + ~ +  0 (5.3) 

Thus, to leading order in the steepness l, we obtain from Eqs. (5.1) and 
(5.3) 

2ren2Vla3z(~b ) 1 rv Do 
p,(t;  ~b)= 15fl2 ~ .  t >  12 D,.(~b) (5.4) 

consistent with Eq. (4.4) when l ~  oo. For finite /, q(~b, co)~ 1/x/~ for 
frequencies co up to ~ (l'-/r~) D.,.(q~)/Do, while for larger co, ~/(~b, co) behaves 
as 1/co, as is typical for soft potentials. It might be interesting to see 
whether such a transition in the asymptotic behavior of r/(~b, co) can be 
observed in concentrated colloidal suspensions, where the interaction 
potential is steep. 

APPENDIX  

Here we calculate the stress-stress autocorrelation function p,(t;  ok) for 
hard spheres. We start with Eq. (4.3) for p,(t;  q~) in the hard-sphere limit, 
i.e., l--* oo: 

2 f? p,,( t; dp) = ~  rcn2Vz(ck) dr r4e-/~v.sl"lV'hs(r) eaDV'hs(r) (A.1) 

with V.dr) the hard-sphere potential and 

a ~  s = 2zL.(~)(v~ - pv' , ,dr)  vr)  (A.2) 

Using that exp( - f l  V.s(r)) V'h~(r) = -- (lift) ~(r -- a) gives 

2 ~ n  2 Vo-4x(~b)  f - c  .(2hs, V t , , 

Jo e --hstr) p,,(t; ~ ) =  1 5 / ~  d r ~ ( r - a )  (A.3) 
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With Eq. (2.1), Eq. (A.3) gives 

q(~, co) - -g~(~) -  nn2a4X(~) dt dr f (r--a)m~s+i~ 

= r/~(~b) + 7rn2o'4Z(~b ) dr 6(r - a)  (i2h ~ + ico) V'h~(r) (A.4) 

We define 

1 
f ( r ,  co) - (12~ s + ico) V'hs(r) (A.5) 

and deduce the following differential equation for f ( r ,  co): 

(2D.,. 7 2 - 2D.,flV'h~(r) Vr + ico) f ( r ,  co) = V'h~(r) (A.6) 

Due to the singular behavior of the hard-sphere potential at r=cr, 
Eq. (A.6) reduces to the boundary value problem 

{ ( 2 D s V ~ . + i c o ) f ( r ,  co)=O, r > a  (A.7) 
2D,.fl V r f ( r ,  o)) = - 1, r = G 

with the solution, bounded for r >/or, 

1 
f ( r ,  co) = - -  e - ' l~ -"~  2aflD.,. (A.8) 

where a 2= - i c o / 2 D s .  Equation (A.5) with Eqs. (A.5) and (A.8) gives the 
asymptotic result for the frequency-dependent viscosity as given in Eqs. (4.4) 
and (4.5), 

r/(~b, co)=r/~(~b)+~b2z(~b)( Do ~,,2 1 + i  
\ D , . ( O ) /  x/.corp tlo (A.9) 

where we have used the P6clet time rv = a2/4Do and the Stokes-Einstein 
relation for Do as given in Eq. (1.3). Equation (A.9) with Eq. (2.1) yields 
for p,~(t; d?) 

pq(t; ~b)=~-~b2x(~b) ( 2Do ,~,/2 1 \,cD~.(~)/ ~ , Z o  (A.lO) 
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For low concentrations (~b~0), X(~b)=l and D.,.(~)=D o and p,~(t;q~) 
reduces to the result of Cichocki and Felderhof ~t~ for p,~(t; ~b ~ 0) for short 
times. These authors calculate p,~(t; ~b ~ 0) for hard spheres, on the basis of 
Eq. (2.2) restricted from the beginning to two hard-sphere particles only, 
but for all times t. One can show that the angular dependences in Eq. (2.2) 
(i.e., in s are irrelevant for short times. Thus, for t ~ 0, both approaches 
are similarly leading to identical results for p,~(t; ~) and q(~b, o9). 
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